Bismuth: A Programming Language for

Distributed, Concurrent & Mobile Systems

Alex Friedman (CS/PW)
Advisors: Professor Rose Bohrer (CS), Professor Yunus Telliel (PW)

Bismuth

Research Problem

From cloud computing to machine learning and the rise of 10T devices, it is Sample Program Syntax
apparent that the future of computing will occur in a more distributed and

Database :: c¢ : Channel<!ExtChoice<get: +Key;-Option<Value>, o Types P.Q = o —
concurrent manner than ever before [1, 2]. However, such programs are set: +Key;+Value, Tamrdess | Chomel Type - Base Statement
' ' : . . . Program<p> Program Type P; Q) Sequence
challenging to write as few languages are designed for these tasks. As such, lock:+Key; IntChoice< i o T o send(e) oo
this project developed Bismuth: an expressive new language designed to -Value;+Value, pi= Protocols while(e){P} While Loop
. . L) +Value>>> { 4T Receive c.case(P, Q) External Choice
enable to the communication of distributed, concurrent, and mobile tasks Map<Key, Values data;) - Send c[i] Tnternal Choice
: .. : : .) Unfold
while retaining correctness guarantees and being accessible to a general accept(c) { fpf) X)thgolfge 322&3@) Weaken
audience of programmers. To accomplish this, | developed and used a new offer c pi p Sequence acceptv(di){f}(oy ﬁceepz %\?ﬁrf .
. . . . _ ExternalChoice<p, p> External Choice acceptihile(c, € ccep 1le L.oop
framework for the rapid audience-centered prototyping of programming get => c.send(data[c.recv()]) InternalChoice<p, p> Internal Choice exit Bt PProssin
Bl R EES set => data[c.recv()] = c.recv() e = Expressions
guages. lock => { T Variable
c.recv() Receive
Key k = c. r'ecv() > exec P Execute Program
Option<Value> opt = datal[k]; ep Base Expression

match opt
| Empty => { c[+Value]; }
| Value v => { c[-Value;+Value];

Contributions & Features

datalk] (;.send(data[k])5) » By using Classical Linear Logic, there is no need to distinguish between
. ata = c.recv(); . i :
Des|gn Framework) parent/child channel & Both linear and non-linear resources are
} supported
" : o } Asynchronous (Write operations are non-blocking)
1. Initial Design: Statement of Motivations L
Establish Audience & Case Study of Languages var db = exec Database; ~+ |ntermixed used of multiple channels within each process
Purpose Create Initial Theory Channel<!(get : +Key;-Option<Value>, ...)> rgs = * Linear resources are easily accessible within loops while maintaining
Channel<! (+Key;+Value)> setRq = ... | correctness guarantees
. . Corpus Study C i '
2. Revise Design: . Can express audience accept(;ﬁqﬁ? l{ A e i eatra Through Accept While Loops, protocols o.f duration controlled by a
Fvaluate Expressiveness & N ;(C):iglzdb)l e(setRg, true) {more(db); link(setRq, db)} _ remote process do not have to be recognized all at once
Design Impact ¢ Lanlf‘;age impact on 1ink(rgs, db) * Multiple processes can communicate over the same channel via
i } protocol manipulations
: accept(writes) { more(db); link(setRq, db) } Acyclic graph distribution structure allows for flexibility and deadlock
3. Assess Design: Either: reject, revise, or weaken(db) £ oedom

Analysis of Results & deem ready for intensive
Conclusion methods

References

Conclusions & Future Work

Proof Overview

+ Bismuth has the potential to be expressive for a wide variety of progress: If (G; L; P) ok then either (G; L; F) done or there exists] ey, S Morie) (2019 Semants or Popostions s Sessios. I viek 3. (609 Program
distributed tasks—representing 5/7 audience tasks with at most minor (G Fi) <uch that (G T }—;) o (q-T' }—;,) Heidelberg. https://doi.org/10.1007/978-3-662-46669-8_23
simplifications; the remaining require modifications that could be T . _)’ ’ '_) ;) oo [2] Akshitha Sriraman. “Enabling Hyperscale Web Services”. PhD thesis. University of Michigan, 2021. doi:
reasonably addressed by future work (parallel and closeable channels). Preservation: If (Gi L; P) ok and (GF L; P) = (G,? L’; P’)' then "Hips: i QoL OrgHn. FE02IZAT

* Bismuth’s consistent approach to distribution made programs that would (G’; Z’; ﬁ’) ok.
otherwise require libraries easy to write. Type Safety, Deadlock Freedom: Inherent given above proofs.

* Bismuth’s correctness properties make some tasks (such as shared state) Configuration Example:

understand as correct.

 Bismuth’s syntax conceals pragmatic information about what processes |
do due to the complexity of protocols. Future work could explore ways of 5 :
making the syntax more communicative. Li=[=[]

as they require additional code for the language to verify them as correct. a = exec P:: b i Channel<p>
This could be addressed through expanding what the language can 4 Web Compiler

	Slide 1

