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Bismuth

Research Problem

From cloud computing to machine learning and the rise of 10T devices, it is Sample Program Syntax
apparent that the future of computing will occur in a more distributed and
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' ' : . . . Program<p> Program Type P; Q) Sequence
challenging to write as few languages are designed for these tasks. As such, lock:+Key; IntChoice< i o T o send(e) oo
this project developed Bismuth: an expressive new language designed to -Value;+Value, pi= Protocols while(e){P} While Loop
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enable to the communication of distributed, concurrent, and mobile tasks Map<Key, Values data; ) - Send c[i] Tnternal Choice
: .. : : . ) Unfold
while retaining correctness guarantees and being accessible to a general accept(c) { fpf) X)thgolfge 322&3@) Weaken
audience of programmers. To accomplish this, | developed and used a new offer c pi p Sequence acceptv(di){f}( oy ﬁceepz %\?ﬁrf .
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match opt
| Empty => { c[+Value]; }
| Value v => { c[-Value;+Value];

Contributions & Features

datalk] (;.send(data[k] )5 ) » By using Classical Linear Logic, there is no need to distinguish between
. ata = c.recv(); . i :
Des|gn Framework ) parent/child channel & Both linear and non-linear resources are
} supported
" : o }  Asynchronous (Write operations are non-blocking)
1. Initial Design: Statement of Motivations L
Establish Audience & Case Study of Languages var db = exec Database; ~+ |ntermixed used of multiple channels within each process
Purpose Create Initial Theory Channel<!(get : +Key;-Option<Value>, ...)> rgs = ... . * Linear resources are easily accessible within loops while maintaining
Channel<! (+Key;+Value)> setRq = ... | correctness guarantees
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2. Revise Design: . Can express audience accept(;ﬁqﬁ? l{ A e i eatra Through Accept While Loops, protocols o.f duration controlled by a
Fvaluate Expressiveness & N ;(C):iglzdb)l e(setRg, true) {more(db); link(setRq, db)} _ remote process do not have to be recognized all at once
Design Impact ¢ Lanlf‘;age impact on 1ink(rgs, db) * Multiple processes can communicate over the same channel via
i } protocol manipulations
: accept(writes) { more(db); link(setRq, db) }  Acyclic graph distribution structure allows for flexibility and deadlock
3. Assess Design: Either: reject, revise, or weaken(db) £ oedom

Analysis of Results & deem ready for intensive
Conclusion methods
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* Bismuth’s consistent approach to distribution made programs that would (G’; Z’; ﬁ’) ok.
otherwise require libraries easy to write. Type Safety, Deadlock Freedom: Inherent given above proofs.

* Bismuth’s correctness properties make some tasks (such as shared state) Configuration Example:

understand as correct.

 Bismuth’s syntax conceals pragmatic information about what processes |
do due to the complexity of protocols. Future work could explore ways of 5 :
making the syntax more communicative. Li=[ =[]

as they require additional code for the language to verify them as correct. a = exec P:: b i Channel<p>
This could be addressed through expanding what the language can 4 Web Compiler
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