A Rhetorical Framework for

Programming Language Design
Alex Friedman (CS/PW)
Advisors: Professor Yunus Telliel (PW), Professor Rose Bohrer (CS)

Proposed Framework & Methods

In order to connect programming languages to the study of rhetoric, |
developed the following language design framework:

Introduction & Background Rhetorical Code Studies

Despite the common perception, programming languages have inherent
rhetorical properties including:

From cloud computing to machine learning and the rise of loT devices,
computing requires the coordination of distributed and concurrent programs
more than ever before [1]; however, such programs are challenging to write as

. Ny \
it : : Audience: Who uses the language for what purpose N
traditional languages are not designed to express these kinds of tasks. guag purp Phase 1. . Statementof Case Study of Create Initial
e Languages vary dramatically from general purpose (C++, Java, Python, etc.) to Excel, } Initial Design / Motivations Languages Theory
To help address this, | created Bismuth: a new programming language for animation software, and more.
dlstrlbuted and concurrent tas!(s. designed to be. accessible to a ger.1eral Metaphors: How we imagine and conceptualize the world \ —
audience of programmers. As existing language design frameworks are either , . . Phase 2. N\ :
. , : . | e The meaning of syntacticelements & the abstractions they allow users to create. . . & Rhetorical
high-cost and user-centered’ or ‘low-cost and designer-centered’, to o . . . , Revise Design Evaluatioh
, ,] e Programming is easier when tasks can be easily conceptualized with the language's
accomplish this, | developed a low-cost yet audience-centered framework for metaphors [2].
the rapid prototyping of roeramming languages. This works by viewin !]] N\ AN
el VAN , g g Pl : v 2 Procedural Rhetoric: Claims made by the rules of a programming language : Phase 3 ~ Grounded
computer languages as a rhetorical medium—thus enabling us to evaluate the d . Theory Conclusion
communicative and expressive potential of various language designs. * Meaning is produced by procedures rather than individual human actions. Assess De5|gn/ Method
e Unintentional effects of rules make such systems challenging to author. .

Conclusions & Future Work

Case Study: Bismuth

Most languages have been designed with the traditional view of sequential

* This framework allowed me to critically examine Bismuth and learn about its
ability to express common tasks in its domain.

While results are less granular and generalizable than other frameworks,
they are fast and easy to attain—making rapid iterations possible.

Future work will be needed to verify the success of this framework and
Bismuth; however, both seem promising in their applicability and ability to
make their respective domains more accessible.

—— (AQ(B—oC—oD)—-l1)Q1 ‘ -A;+B;+C; -D o

computation and existing theories for distributed languages are often
mathematically terse. In developing Bismuth, | needed to determine what .
concepts would be helpful to users and how to represent them in an accessible '

manner—making its development a good test of my framework. max :: ¢ : Channel<! (+num);Option<num>)> {
Option<num> optNum = Empty

accept(c, 1) { optInt = c.recv() }

Option<num> max(num[] numbers) {
if numbers.length == @ { return Empty }

match optNum
| Empty => {

+» accept(c) {num n = c.recv() }
c.send(optNum)

e Bismuth has the potential to express many audience tasks—representing 5/7
of the corpus tasks with at most minor simplifications, and the remaining

References

} [1] Lindley, S., Morris, J.G. "A semantics for propositions as sessions. In: Vitek, J. (eds) Programming Languages and Systems.

limitations could be reasonably addressed by future work.
Through using classical logic, Bismuth removes the need to distinguish each

end of a channel which allows its protocol syntax to more closely resemble ™
established computer science metaphors—making it easier to work with.

Bismuth’s protocol syntax conceals what processes do by communicating —

data types without a means to name what the data represents.

Correctness properties allows for automatic handling of tedious tasks and
the elimination of errors/bugs—allowing programmers to focus on
communicating the novel computations they wish to express.

Bismuth's limited number of rules makes expressing certain programs
challenging (such as shared state)—even when, as a user of the language, we
may be able to correctly reason about a program's validity.

| num n => {

accept(c) { n = Max(n, c.recv()) }

c.send(n)

}

ExtChoice<Error, A;ExtChoice<Error; B;...

>>

num n = numbers.pop()
for(num i : numbers) { n = Max(n, i) }
return n

}

Closeable<A;B;...>

Channel<+Channel<A>; +Channel> Channel< a : A | b : B>
Channel<ExtChoice<A, B>> c = ... Channel<ExtChoice<a : A, b : B, a2 : A>> c;
c.case(offer c

<case for c : Channel<A>>, | a => ...

<case for c¢ : Channel> | a2 => ...

)

| b => ...

ESOP 2015. Lecture Notes in Computer Science, vol 9032. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-
46669-8 23

[2] Green, T.R.G., and Petre, M. "Usability analysisof visual programming environments: a ‘cognitive dimensions’ framework."
Journal of Visual Languages & Computing 7.2 (1996): 131-174.

[3] Mazurak, K., and Zdancewic, S. "Lolliproc: to concurrency from classical linear logic via Curry-Howard and control." ACM
Sigplan Notices 45.9 (2010): 39-50.

	Slide 1

