
Background & Framework

References
[1] Lindley, S., Morris, J.G. "A semantics for propositions as sessions. In: Vitek, J. (eds) Programming Languages and Systems.
ESOP 2015. Lecture Notes in Computer Science, vol 9032. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-
46669-8_23
[2] Green, T.R.G., and Petre, M. "Usability analysis of visual programming environments: a ‘cognitive dimensions’ framework."
Journal of Visual Languages & Computing 7.2 (1996): 131-174.
[3] Mazurak, K., and Zdancewic, S. "Lolliproc: to concurrency from classical linear logic via Curry-Howard and control." ACM
Sigplan Notices 45.9 (2010): 39-50.

A Rhetorical Framework for
Programming Language Design

Alex Friedman (CS/PW)
Advisors: Professor Yunus Telliel (PW), Professor Rose Bohrer (CS)

Phase 1.
Initial Design

Statement of
Motivations

Case Study of
Languages

Create Initial
Theory

Phase 2.
Revise Design

Corpus Study
& Rhetorical
Evaluation

Phase 3.
Assess Design

Grounded
Theory
Method

Conclusion

Audience: Who uses the language for what purpose

• Languages vary dramatically from general purpose (C++, Java, Python, etc.) to Excel,
animation software, and more.

Metaphors: How we imagine and conceptualize the world

• The meaning of syntactic elements & the abstractions they allow users to create.

• Programming is easier when tasks can be easily conceptualized with the language's
metaphors [2].

Procedural Rhetoric: Claims made by the rules of a programming language

• Meaning is produced by procedures rather than individual human actions.

• Unintentional effects of rules make such systems challenging to author.

Introduction & Background
From cloud computing to machine learning and the rise of IoT devices,
computing requires the coordination of distributed and concurrent programs
more than ever before [1]; however, such programs are challenging to write as
traditional languages are not designed to express these kinds of tasks.

To help address this, I created Bismuth: a new programming language for
distributed and concurrent tasks designed to be accessible to a general
audience of programmers. As existing language design frameworks are either
'high-cost and user-centered' or 'low-cost and designer-centered', to
accomplish this, I developed a low-cost yet audience-centered framework for
the rapid prototyping of programming languages. This works by viewing
computer languages as a rhetorical medium—thus enabling us to evaluate the
communicative and expressive potential of various language designs.

Rhetorical Code Studies

Case Study: Bismuth Conclusions & Future Work
• This framework allowed me to critically examine Bismuth and learn about its

ability to express common tasks in its domain.
• While results are less granular and generalizable than other frameworks,

they are fast and easy to attain—making rapid iterations possible.
• Future work will be needed to verify the success of this framework and

Bismuth; however, both seem promising in their applicability and ability to
make their respective domains more accessible.

Proposed Framework & Methods

Background Intuitionistic [3] vs Classical Protocols

Most languages have been designed with the traditional view of sequential
computation and existing theories for distributed languages are often
mathematically terse. In developing Bismuth, I needed to determine what
concepts would be helpful to users and how to represent them in an accessible
manner—making its development a good test of my framework. max :: c : Channel<!(+num);Option<num>)> {

Option<num> optNum = Empty
accept(c, 1) { optInt = c.recv() }

match optNum
| Empty => {

accept(c) {num n = c.recv() }
c.send(optNum)

}
| num n => {

accept(c) { n = Max(n, c.recv()) }
c.send(n)

}
}

Option<num> max(num[] numbers) {
if numbers.length == 0 { return Empty }

num n = numbers.pop()
for(num i : numbers) { n = Max(n, i) }
return n

}

Bismuth Prototype vs Traditional Notation

Findings

ExtChoice<Error, A;ExtChoice<Error; B;...>> Closeable<A;B;...>

Channel<+Channel<A>; +Channel> Channel< a : A | b : B>

Channel<ExtChoice<A, B>> c = ...
c.case(

<case for c : Channel<A>>,
<case for c : Channel>

)

Channel<ExtChoice<a : A, b : B, a2 : A>> c;
offer c

| a => ...
| a2 => ...
| b => ...

Sample Improvements

(A⊗(B⊸C⊸D)⊸⊥)⊗1 -A;+B;+C;-D

• Bismuth has the potential to express many audience tasks—representing 5/7
of the corpus tasks with at most minor simplifications, and the remaining
limitations could be reasonably addressed by future work.

• Through using classical logic, Bismuth removes the need to distinguish each
end of a channel which allows its protocol syntax to more closely resemble
established computer science metaphors—making it easier to work with.

• Bismuth’s protocol syntax conceals what processes do by communicating
data types without a means to name what the data represents.

• Correctness properties allows for automatic handling of tedious tasks and
the elimination of errors/bugs—allowing programmers to focus on
communicating the novel computations they wish to express.

• Bismuth's limited number of rules makes expressing certain programs
challenging (such as shared state)—even when, as a user of the language, we
may be able to correctly reason about a program's validity.

CS Poster Compiler Website

Despite the common perception, programming languages have inherent
rhetorical properties including:

In order to connect programming languages to the study of rhetoric, I
developed the following language design framework:

MQP Report

	Slide 1

