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Proposed Framework & Methods

In order to connect programming languages to the study of rhetoric, |
developed the following language design framework:

Introduction & Background Rhetorical Code Studies

Despite the common perception, programming languages have inherent
rhetorical properties including:

From cloud computing to machine learning and the rise of loT devices,
computing requires the coordination of distributed and concurrent programs
more than ever before [1]; however, such programs are challenging to write as
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Conclusions & Future Work

Case Study: Bismuth

Most languages have been designed with the traditional view of sequential

* This framework allowed me to critically examine Bismuth and learn about its
ability to express common tasks in its domain.

While results are less granular and generalizable than other frameworks,
they are fast and easy to attain—making rapid iterations possible.

Future work will be needed to verify the success of this framework and
Bismuth; however, both seem promising in their applicability and ability to
make their respective domains more accessible.
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computation and existing theories for distributed languages are often
mathematically terse. In developing Bismuth, | needed to determine what .
concepts would be helpful to users and how to represent them in an accessible '

manner—making its development a good test of my framework. max :: ¢ : Channel<! (+num);Option<num>)> {
Option<num> optNum = Empty

accept(c, 1) { optInt = c.recv() }

Option<num> max(num[] numbers) {
if numbers.length == @ { return Empty }

match optNum
| Empty => {

+» accept(c) {num n = c.recv() }
c.send(optNum)

e Bismuth has the potential to express many audience tasks—representing 5/7
of the corpus tasks with at most minor simplifications, and the remaining
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limitations could be reasonably addressed by future work.
Through using classical logic, Bismuth removes the need to distinguish each

end of a channel which allows its protocol syntax to more closely resemble ™
established computer science metaphors—making it easier to work with.

Bismuth’s protocol syntax conceals what processes do by communicating —

data types without a means to name what the data represents.

Correctness properties allows for automatic handling of tedious tasks and
the elimination of errors/bugs—allowing programmers to focus on
communicating the novel computations they wish to express.

Bismuth's limited number of rules makes expressing certain programs
challenging (such as shared state)—even when, as a user of the language, we
may be able to correctly reason about a program's validity.

| num n => {

accept(c) { n = Max(n, c.recv()) }

c.send(n)

}

ExtChoice<Error, A;ExtChoice<Error; B;...

>>

num n = numbers.pop()
for(num i : numbers) { n = Max(n, i) }
return n

}

Closeable<A;B;...>

Channel<+Channel<A>; +Channel<B>> Channel< a : A | b : B>
Channel<ExtChoice<A, B>> c = ... Channel<ExtChoice<a : A, b : B, a2 : A>> c;
c.case( offer c

<case for c : Channel<A>>, | a => ...

<case for c¢ : Channel<B>> | a2 => ...

)

| b => ...
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